Ежедневные новости о ситуации в мире и России, сводка о пандемии Коронавируса, новости культуры, науки и шоу бизнеса

Квантовая механика помогла придумать оптическую память невообразимой плотности

Группа учёных из США смогла соединить квантово-механическую теорию и цифровую запись, проложив путь к потенциально сверхплотной оптической памяти. Запись осуществляется излучателями атомарного размера, встроенными в саму память, а ячейками для хранения информации выступают множественные дефекты в атомарной структуре памяти. Всё это замешано на управляемом изменении квантовых состояний дефектов, явив собой смесь классической и квантовой физики.

Квантовая механика помогла придумать оптическую память невообразимой плотности

Исследование и разработку моделей изучаемых явлений осуществили физики из Аргоннской национальной лаборатории министерства энергетики США и Притцкеровской школы молекулярной инженерии Чикагского университета. Сначала они провели моделирование и предсказали возможные результаты и лишь потом провели эксперименты. Проделанная учёными работа во многом новаторская. Ещё никто не изучал вопрос, как поведут себя дефекты в атомарной структуре твёрдых материалов, если по соседству с ними в нанометровой доступности расположатся излучатели энергии (фотонов). Фактически это физика в ближнем поле, которая непросто поддаётся изучению и, прежде всего, из-за возникновения разного рода квантовых эффектов.

«Мы разработали фундаментальные физические основы того, как передача энергии между дефектами может лежать в основе невероятно эффективного оптического метода хранения, — сказала Джулия Галли (Giulia Galli), профессор Чикагского университета и старший научный сотрудник Аргоннской национальной лаборатории. — Это исследование иллюстрирует важность изучения основных принципов и квантовомеханических теорий для освещения новых, зарождающихся технологий».

Если мы будет рассматривать, например, оптические диски, то минимально допустимое пятно для записи будет ограничено дифракционным пределом оптической системы и не сможет быть меньше длины волны записывающего лазера. Учёные предложили насытить материал атомами редкоземельных элементов, которые отличаются тем, что способны переизлучать падающий на них свет в более узком диапазоне и на других длинах волн. Тем самым можно создать материал с мириадами записывающих «лазеров» внутри, каждый из которых был бы размером с атом.

Читать также:
Lian Li выпустила компьютерный вентилятор с 1,6-дюймовым цветным дисплеем

Точно также материал можно насытить ячейками для записи, в роли которых выступали бы дефекты в кристаллической структуре. При достаточном количестве атомов редкоземельных элементов и дефектов большинство из них находились бы в нанометровой доступности друг от друга. Суть открытия в том, что редкоземельные излучатели (точнее — переизлучатели) необратимо или на очень длительное время меняют квантовые состояния находящихся по соседству дефектов (переводят их из синглетного в триплетное состояние). А это память, работающая в оптическим диапазоне. И очень плотная память — на уровне атомарной структуры.

Учёные предупреждают, что они пока слабо представляют многие механизмы работы такой памяти, но не сомневаются, что это интересный и перспективный путь для удовлетворения нужд человечества в сохранении цифровых архивов.